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A generalization of supersymmetric quantum mechanics can be obtained in two
different ways using the theory of the q-deformation of the oscillator algebra,
according to whether q is a root of unity or not. In the first case the fractional
supersymmetric quantum mechanic is between bosons and q-bosons. In the second
case we obtain the deformed supersymmetric quantum mechanics by considering
bosons and a deformed truncated oscillator algebra.

The theory of the deformation of Lie algebras has received wide attention. Most
of the deformed physical Lie algebras (also called quantum groups) has been
realized starting from the deformation of the Heisenberg algebra. In this sense
quantum groups can be formulated such that the defining algebraic relations
are expressed as generalized commutation ones. Indeed they include phases in
quadratic equations instead of just plus or minus signs, so they may be viewed
as a natural generalization of supersymmetry. It has been discovered (Biedenharn,
1989; Macfarlane, 1989) that the q-deformation of the oscillator algebra provides
a new algebra interpolating between the ones describing Bose and Fermi statistics.
Moroever, an interesting connection between the latter and the fractional
supersymmetry (F-Susy) has been established and has been seen as a
generalization of supersymmetry (Leclair and Vafa, 1993). Another elegant way
leading to generalized supersymmetry has been discussed by Rubakov and
Spirodonov (1988), who constructed parasupersymmet ric quantum mechanics
(PSQM) by considering one boson and one parafermion of order 2.
The corresponding supercharges Q, Q + and the Hamiltonian operator H satisfy

Q 3 5 Q 1 3 5 0

Q 2 Q + 1 Q Q + Q 1 Q + Q 2 5 4QH

[H, Q] 5 0, [H, Q +] 5 0 (1)

1 FaculteÂdes Sciences, DeÂpartement de Physique, Laboratoire de Physique TheÂorique (LPT-
ICAC), B. P. 1014, Rabat, Morocco.

2021

0020-7748/98/0700-202 1$15.00/0 q 1998 Plenum Publishing Corporation



2022 Daoud and Hassouni

Bagchi et al. (1995) generalized this result to an arbitrary order p, realizing

parasupersymmetry (parasusy) using ordinary bosons and those corresponding

to the truncated harmonic oscillators at an arbitrary order p. Moreover they
showed that even though the parasusy algebras are different from the usual

parasupersymmetric quantum machanics (PSQM), the consequences of the

two are identical.

In this paper we propose a new generalization of supersymmetric quan-

tum mechanics (SQM) in two different ways. The first one involves bosons

and q-deformed bosons with q a root of unity. In this case, we obtain fractional
supersymmetric quantum mechanics (FSQM). The second way uses bosons

and a q-deformed truncated oscillator (with q being generic) instead of fermi-

ons to construct the ordinary supersymmetry.

To start, let us introduce the q-deformed oscillator algebra defined by

considering the creation and annihilation operators a, a + and N satisfying

a a + 2 q a +a 5 1

[N, a] 5 2 a, [N, a +] 5 a + (2)

with the condition

q k 5 1, where k is an integer number and k $ 2 (3)

The elements a and a + are also called quonic operators in the literature and

interpolate between the bosonic and fermonic ones for particular values of

k. The corresponding statistics are exotic. We suppose that these exotic

particles (quons) obey the generalized Pauli exclusion principle stating that

no more than k 2 1 identical particles of fractional spin s 5 k 2 1 can live in

the same quantum state. The relevant Fock space is generated by the set
of eigenvectors

F 5 { | n & , n 5 0, 1, . . . , k 2 1} (4)

The actions of operators a, a + and N in this basis are given by

a | n & 5 [n] | n 2 1 & (5a)

a + | n & 5 | n 1 1 & (5b)

N | n & 5 n | n & (5c)

where

[x] 5
q x 2 1

q 2 1
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The creation and annihilation operators satisfy the following nilpotency

condition:

a k 5 a 1 k 5 0 (6)

which means that the q-deformed oscillator (quons) interpolates between the

Pauli matrices (k 5 2) and the usual bosonic oscillator (k 5 ` ).

In the following we will deal with these basic tools to formulate FSQM,

so we will consider ordinary bosons and quons. Before doing this, we present

the necessary polynomial commutation relation:

a k 2 1a + 1 a k 2 2a +a 1 . . . 1 aa+a k 2 2 1 a + a k 2 1 (7)

5 ([1] 1 . . . 1 [k 2 1])a k 2 2

This relation is obtained by using the q-commutation relation (2). It is easy

to see that the coefficient appearing in the right-hand side of equation (7)

can be expressed as

[1] 1 [2] 1 . . . 1 [k 2 1] 5 o
k 2 1

i 5 1
[i] 5 o

k 2 1

i 5 1

q i 2 1

q 2 1
5

k

1 2 q
(8)

Now we can introduce the notion of the FSQM using the equality (7). In the

above Fock space the operators a and a + can be viewed as k 3 k matrices given by

(a) a b 5 [ a 2 1] d a 1 1, b (9a)

(a +) a b 5 d a , b 1 1 (9b)

where a , b 5 1, 2, . . . , k.

The supercharge operators are defined by

(Q) a b 5 [ a 2 1] (P 1 iW a ) d a 1 1, b [ (b + a) a b (10a)

(Q +) a b 5 (P 2 iW b ) d a , b 1 1 [ (ba+) a b (10b)

Here P and W a , a 5 1, . . . , k, are, respectively, the translation and superpo-

tential operators, and b and b + are the annihilation and creation bosonic

operators (bb+ 2 b +b 5 1) commuting with a and a +. We recall that b and

b + act on a bosonic Fock space FB , FB 5 { | n & , n 5 0, 1, . . . , ` }.

Using these tools, one can easily see that

Q k 5 Q 1 k 5 0 (11)

We note that the equalities (11) are equivalent to the formula (6).

The general form of the Hamiltonian is given by

H a b 5 H a d a b
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and

Hr 5
P 2

2
1

1

2
(w 2

r 2 w 8r) 1
1

2
Cr (12a)

Hk 5
P 2

2
1

1

2
(w 2

k 1 w 8k) 1
1

2
Ck (12b)

where r 5 1, 2, . . . , k 2 1.

One can verify that this Hamiltonian operator commutes with the super-

charges Q and Q + if the following equality holds:

w 2
s 2 1 1 w 8s 2 1 1 Cs 2 1 5 w 2

s 2 w 8s 1 Cs (13)

The constants Ci may be interpreted physically as the quonic oscillator energy.

Now we give the polynomial relation between the supercharges Q and

Q +; these relations are obtained by a direct calculus if one uses the equalities

(7) and (10). We have

Q k 2 1Q + 1 Q k 2 2Q + Q 1 . . . 1 Q +Q k 2 1 (14)

5 2([1] 1 [2] 1 . . . 1 [k 2 1]) Q k 2 2 H

To obtain the relation (14), it is necessary to have the following condition

on the constants Ci:

C1 1 2q 2 1C2 1 . . . 1 (k 2 1)q 2 2 k Ck 2 1 5 0 (15)

Note that the quonic oscillators introduced above for the realization of

FSQM are qualitatively different from the case where q is generic. In fact,

in the first case the Hilbert space is finite dimentional, while in the second case
the Fock space is an infinite-dimentional space. This constitutes a problem in

the sense that supersymmetry cannot be generalized if one considers an

infinite-dimentional Fock space. To remove this difficulty, we propose the

truncated oscillator introduced by

aa+ 2 qa+a 5 1 2 [l]K, Ka 5 0 (16)

where K is a projection operator defined by K [ | l 2 1 & ^ l 2 1 | and l is an

arbitrary integer.

The Fock space corresponding to this truncated oscillator is given by

F 5 { | n & , n 5 0, 1, . . . , l 2 1} (17)

We point out that the deformation parameter q and the integer l appearing in

this Fock space are independent, in contrast to the first case (q k 5 1) (FSQM).



Generalization of Supersymmetric Quantum Mechanics 2025

The action of the operators a and a + on F is as follows:

a | n & 5 [n] | n 2 1 & (18a)

a + | n & 5 u (l 2 1 2 n) | n 1 1 & (18b)

N | n & 5 n | n & (18c)

K | n & 5 d l,n 1 1 | n & (18d)

u (x) is a step function:

u (x) [ H 0 if x # 0

1 if x . 0
(19)

By a direct calculus one can verify the nilpotency condition on a and a + in
this matricial representation.

As in the first case, we give the nontrivial polynomial commutation

relation between a and a + as

a l 2 1a + 1 a l 2 2 a +a 1 . . . 1 aa+a l 2 2 1 a +a l 2 1 5 ([1] 1 . . . 1 [l 2 1])a l 2 2 (20)

We note that, by taking the classical limit q going to one, we recover the

result obtained in Khare (1992, 1993).

One can extract the polynomial commutation relations in terms of super-

charges Q and Q + as follows:

Q l 2 1Q + 1 Q l 2 2 Q +Q 1 . . . 1 Q +Q l 2 1 5 2(1 1 [2] 1 . . . 1 [l 2 1])Q l 2 2 H (21)

The nilpotency condition on Q and Q + is immediate from those on a and a +

and the relation satisfied by the constants C s remains the same as in equations

(15); one has to substitute k by l:

C1 1 2q 2 1C2 1 . . . 1 (l 2 1)q 2 2 lCl 2 1 5 0 (22)

It is obvious that the relation (21) can be considered as a deformation of

the equality

Q l 2 1Q + 1 Q l 2 2 Q +Q 1 . . . 1 Q +Q l 2 1 5 l (l 2 1)Q l 2 2H (23)

obtained in Khare (1992, 1993). We find the result given by Rubakov and

Spiridonov (1988) if one considers l 5 3 and q 5 1. The ordinary supersymme-

try corresponds to the case l 5 2 and q 5 1.
To summarize, in this work we have constructed the fractional supersym-

metric quantum mechanics (FSQM) of an arbitrary order k. This construction

has been based on the notion of the deformed oscillator. We showed also

that the Hamiltonian operator has a nontrivial form in terms of the super-

charges. The ordinary supersymmetric quantum mechanics is present for
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k 5 2, so the FSQM seems to be its consistent generalization. In another

way, we also showed that the supersymmetric quantum mechanics is between

bosons and the q-truncated oscillator and we presented the corresponding
Hamiltonian.

To end this paper, we remark that this result (FSQM) can be found

starting from the para-Grassman differential calculus (Filippov et al., 1992).

The latter is based on the relation between variables and derivatives ( u , - u ) as

- u u 2 q u - u 5 1 (24)

with the condition

u k 5 - k
u 5 0 (25)

The para-Grassmanian variables are represented by k 3 k matrices in this

work; one can construct the fractional supersymmetric quantum mechanics

by using this formalism. Indeed they are expressed by (Filippov et al., 1992)

^ m | u | n & , d m,n 1 1

^ m | - u | n & , d m,n 2 1 (26)

This matricial representation of u and - u allows us to generalize the supersym-

metry in a way similar to the one developed in (Leclair and Vafa, 1993).

More details of this work will be clarified in a further paper (Hassouni and

Daoud, n.d.).
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